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a b s t r a c t 

The beta anomaly, negative (positive) alpha on stocks with high (low) beta, arises from 

beta’s positive correlation with idiosyncratic volatility (IVOL). The relation between IVOL 

and alpha is positive among underpriced stocks but negative and stronger among over- 

priced stocks (Stambaugh, Yu, and Yuan, 2015). That stronger negative relation combines 

with the positive IVOL-beta correlation to produce the beta anomaly. The anomaly is sig- 

nificant only within overpriced stocks and only in periods when the beta-IVOL correlation 

and the likelihood of overpricing are simultaneously high. Either controlling for IVOL or 

simply excluding overpriced stocks with high IVOL renders the beta anomaly insignificant. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The beta anomaly is perhaps the longest-standing em-

pirical challenge to the Capital Asset Pricing Model (CAPM)

of Sharpe (1964) and Lintner (1965) and asset-pricing

models that followed. Beginning with the studies of Black

et al. (1972) and Fama and MacBeth (1973) , the evidence

shows that high-beta stocks earn too little compared to

low-beta stocks. In other words, stocks with high (low)
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betas have negative (positive) alphas. Explanations of the

beta anomaly typically identify beta as the relevant stock

characteristic generating the anomaly. 

We find that beta is not the stock characteristic driv-

ing the beta anomaly. Rather, beta suffers from guilt by

association. Specifically, in the cross-section of stocks, the

correlation between beta and idiosyncratic volatility (IVOL)

is positive, about 0.33 on average. This correlation can ex-

ist for a number of reasons. Greater leverage can increase

both IVOL and beta on a company’s stock. Also, if high-

IVOL stocks are more susceptible to mispricing, part of

which arises from market-correlated sentiment, then that

source of market sensitivity is greater for high-IVOL stocks.

The beta-IVOL correlation produces the beta anomaly be-

cause IVOL is related to alpha. The alpha-IVOL relation in-

volves mispricing, as shown by Stambaugh et al. (2015) .

The relation between alpha and IVOL is positive among

underpriced stocks but negative and stronger among over-

priced stocks, where a stock’s mispricing is measured by

combining its rankings with respect to 11 prominent re-

turn anomalies. As that study explains, the dependence

of the direction of the alpha-IVOL relation on the direc-
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tion of mispricing is consistent with IVOL reflecting arbi- 

trage risk that deters price correction. The stronger neg- 

ative relation among overpriced stocks is consistent with 

less capital available to bear the arbitrage risk of shorting 

overpriced stocks as compared to the capital that can bear 

such risk when buying underpriced stocks. The asymme- 

try in the strength of the positive and negative relations 

produces a negative alpha-IVOL relation in the total stock 

universe. That negative relation combines with the positive 

correlation between beta and IVOL to produce the negative 

relation between alpha and beta, the beta anomaly. 

Consistent with our explanation, we find a signifi- 

cant beta anomaly only within the most-overpriced stocks, 

i.e., those in the top quintile of the Stambaugh et al. 

(2015) mispricing measure. For those stocks, the alpha 

spread between stocks in the top and bottom deciles of 

beta is −60 basis points (bps) per month, with a t -statistic 

of −2 . 82 . Across the remaining four quintiles of the mis- 

pricing measure, the same spread ranges from −25 bps to 

18 bps, with t -statistics between −1 . 28 and 0.90. These 

results are as expected: If the beta anomaly is due to 

beta’s correlation with IVOL, then a negative alpha-beta re- 

lation can arise only where there is a negative alpha-IVOL 

relation, i.e., only among overpriced stocks. The negative 

alpha-beta relation for those stocks is strong enough to de- 

liver the well-known beta anomaly when sorting on beta 

in the total universe. Even though the alpha-IVOL relation 

for underpriced stocks is significantly positive, a weaker 

(insignificant) corresponding positive alpha-beta relation 

among those stocks is unsurprising. That segment’s posi- 

tive alpha-IVOL relation is weaker than the negative rela- 

tion among overpriced stocks, so IVOL’s role in that rela- 

tion survives only weakly when played imperfectly by beta. 

Also consistent with our explanation, the beta anomaly 

becomes insignificant after controlling for IVOL. We con- 

trol for IVOL in a variety of ways, including independent 

double-sorting on beta and IVOL as well as sorting on the 

component of beta that is cross-sectionally orthogonal to 

IVOL. Deleting high-IVOL overpriced stocks, just 7% of the 

stock universe (1% in terms of market value), also renders 

the beta anomaly insignificant. In contrast, deleting the 7% 

of stocks with the highest betas (5% in terms of market 

value) has virtually no effect on the beta anomaly. 

Beta-driven explanations of the beta anomaly seem 

challenged by our finding that the anomaly exists only 

among the most-overpriced stocks. For example, the most 

familiar beta-driven explanation of the beta anomaly 

argues that borrowing and/or margin constraints confer an 

advantage to high-beta stocks for which investors accept 

lower returns (e.g., Black, 1972; Fama, 1976; Frazzini and 

Pedersen, 2014 ). If some investors prefer high-beta stocks 

for that reason, it is not clear why such investors should 

prefer only the high-beta stocks that are overpriced for 

reasons unrelated to beta. 1 One might think such investors 

would instead, ceteris paribus, prefer the underpriced 

high-beta stocks. Other beta-driven explanations that face 
1 The identification of overpriced stocks is essentially unrelated to beta. 

The mispricing measure typically has just a 0.07 (and statistically in- 

significant) cross-sectional correlation with beta, which is not one of the 

anomaly variables used to construct the mispricing measure. 
the same challenge include preferences for high-beta 

stocks by unsophisticated optimistic investors (e.g., Barber 

and Odean, 20 0 0; Antiniou et al., 2016 ) and by institu- 

tional investors striving to beat benchmarks (e.g., Baker 

et al., 2011; Christoffersen and Simutin, 2017 ). Similarly, 

the same challenge confronts the explanation proposed 

by Hong and Sraer (2016) . They suggest the beta anomaly 

stems from short-sale impediments combined with the 

greater sensitivity of high-beta stocks to disagreement 

about the stock market’s prospects, but again it is not 

clear why such an effect should be confined to overpriced 

stocks. 

Although alternative explanations of the beta anomaly 

seem inconsistent with our evidence, the underlying mech- 

anisms accompanying such explanations may still be at 

work in making characteristics other than beta relevant to 

the cross-section of returns. For example, while borrowing 

constraints appear not to be the explanation for the beta 

anomaly, those constraints may nevertheless exert return 

effects when investigated using a measure other than beta. 

In fact, Asness et al. (2016) conclude that a stock’s corre- 

lation between its return and the market return is related 

to average return in ways consistent with borrowing con- 

straints. 

We also examine IVOL’s role in the betting-against-beta 

(BAB) strategy of Frazzini and Pedersen (2014) . The BAB 

strategy buys low-beta stocks and shorts high-beta stocks, 

consistent with exploiting the beta anomaly. At the same 

time, however, the strategy takes a levered net-long posi- 

tion to achieve a zero beta, thereby creating a component 

of the BAB strategy unrelated to the beta anomaly. As a 

result, the BAB strategy can produce positive alpha where 

there is no beta anomaly but zero alpha where there is. 

In fact, we find significant BAB alphas in the four mispric- 

ing quintiles that exhibit little or no beta anomaly, but we 

find no significant BAB alpha in the quintile that by far 

exhibits the strongest beta anomaly: the quintile contain- 

ing the most-overpriced stocks. The BAB strategy’s unlev- 

ered component, which goes long and short equal amounts 

of low- and high-beta stocks, isolates the contribution of 

the beta anomaly. The alpha on this unlevered component 

does not survive a control for IVOL in which we augment 

the three Fama and French (1993) factors with the return 

on a betting-against-IVOL strategy constructed analogously 

to the BAB strategy’s unlevered component. 

Our explanation of the beta anomaly requires a sub- 

stantial presence of overpriced stocks along with a posi- 

tive correlation between beta and IVOL. Without overpric- 

ing, there is no role for IVOL in deterring the correction 

of overpricing, so there is no negative alpha-IVOL relation. 

That negative relation does not produce the beta anomaly 

without a positive beta-IVOL correlation, especially within 

the overpriced stocks. In other words, the conditions most 

conducive to the beta anomaly are a substantial pres- 

ence of overpriced stocks coupled with a high beta-IVOL 

correlation within those stocks. We pursue further sup- 

port of our explanation of the beta anomaly by exploit- 

ing variation over time in both the likelihood of overpriced 

stocks, proxied by the Baker and Wurgler (2006) investor 

sentiment index, as well as the beta-IVOL correlation. Con- 

sistent with our explanation, we find a significant beta 
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2 Eq. (5) relies on the identity, 

var { E( ̂  βi | βi ) } = var ( ̂  βi ) − E { var ( ̂  βi | βi ) } . 

Assuming ˆ βi is unbiased, i.e., E( ̂  βi | βi ) = βi , allows the left-hand side to 

be rewritten: 

var { βi } = var ( ̂  βi ) − E { var ( ̂  βi | βi ) } . 

Replacing the right-hand terms with their corresponding sample quanti- 

ties gives the right-hand side (RHS) of (5) . 
anomaly in periods when investor sentiment and the beta-

IVOL correlation are both above their median values, but

we find no beta anomaly when either or both quantities

are below their medians. 

The rest of paper proceeds as follows. Section 2 de-

scribes our measures of mispricing, IVOL, and beta. Section

3 presents our main empirical results. Section 4 analyzes

the betting-against-beta strategy. Section 5 concludes. 

2. Empirical measures: mispricing, IVOL, and beta 

Our study’s main empirical results, presented in the

next section, rely primarily on sorting stocks according to

one or more measures: mispricing, IVOL, and beta. In this

section we explain how we estimate each of these mea-

sures. 

Our measure of mispricing follows Stambaugh et al.

(2015) , who construct a stock’s mispricing measure each

month as the average of the stock’s rankings with respect

to 11 variables associated with prominent return anoma-

lies. For each anomaly variable, we assign a ranking per-

centile to each stock reflecting the cross-sectional sort on

that variable. High ranks correspond to low estimated al-

pha. A stock’s mispricing measure in a given month is the

simple average of its ranking percentiles across the anoma-

lies. The higher is this average ranking, the more over-

priced is the stock relative to others in the cross-section.

Stambaugh et al. (2015) suggest their mispricing measure

be interpreted as proxying for a stock’s ex ante potential to

be mispriced, as opposed to capturing the mispricing that

survives arbitrage-driven price correction. The latter mis-

pricing would be reflected in estimated alpha. Those au-

thors find that among stocks identified as overpriced (un-

derpriced) by this mispricing measure, alpha is decreasing

(increasing) in IVOL, consistent with IVOL deterring price-

correcting arbitrage. 

The sample for our study, obtained from the Cen-

ter for Research in Security Prices (CRSP), includes all

NYSE/Amex/Nasdaq common stocks having prices of at

least five dollars (thus excluding typically illiquid penny

stocks). We follow Stambaugh et al. (2015) in eliminating

stocks for which at least five (of the 11) anomaly vari-

ables cannot be computed. As those authors report, this

five-anomaly requirement eliminates about 10% of the re-

maining stocks. Our sample period is from January 1963

through December 2013. 

We compute IVOL, following Ang et al. (2006) , as

the standard deviation of the most recent month’s daily

benchmark-adjusted returns. The latter are computed as

the residuals in a regression of each stock’s daily return

on daily realizations of the three factors defined by Fama

and French (1993) : market (MKT), small-minus-big (SMB),

and high-minus-low (HML). This IVOL estimate is also used

by Stambaugh et al. (2015) . Computing IVOL using resid-

uals in a regression on just MKT, however, produces ex-

tremely similar results for our study, which is not surpris-

ing given that three-factor and one-factor IVOL have an av-

erage (rank or simple) correlation of 0.99. 

We estimate a stock’s beta by regressing the stock’s

monthly excess return on monthly market excess returns,

with excess returns computed by subtracting the one-
month US Treasury bill rate. The regression includes the

lagged market return to accommodate non-synchronous

trading effects: 

r i,t = a i + βi, 0 r m,t + βi, 1 r m,t−1 + εi,t . (1)

We run the regression each month over a moving window

covering the most recent 60 months, requiring at least 36

months of non-missing data for the stock to be assigned

a beta value for the given month. The stock’s time-series

beta estimate is computed as 

ˆ βts 
i = 

ˆ βi, 0 + 

ˆ βi, 1 , (2)

applying the summed-slopes procedure of Dimson (1979) .

To increase precision, we then follow Vasicek (1973) and

shrink this time-series estimate toward one to form our

beta estimate, 

ˆ βi = ω i ̂
 βts 
i + (1 − ω i ) × 1 , (3)

where 

ω i = 

1 / ̂  σ 2 ( ̂  βts 
i 
) 

1 / ̂  σ 2 ( ̂  βts 
i 
) + 1 / ̂  σ 2 (β) 

, (4)

ˆ σ ( ̂  βts 
i 

) is the standard error of ˆ βts 
i 

, and ˆ σ 2 (β) is an esti-

mate of the cross-sectional variance of true betas. We com-

pute the latter estimate as 

ˆ σ 2 (β) = ˆ σ 2 
cs ( ̂

 βts 
i ) − ˆ σ 2 ( ̂  βts 

i 
) , (5)

where ˆ σ 2 
cs ( ̂

 βts 
i 

) is the cross-sectional variance of ˆ βts 
i 

, and

ˆ σ 2 ( ̂  βts 
i 

) is the cross-sectional mean of ˆ σ 2 ( ̂  βts 
i 

) . 2 

There are numerous approaches for estimating betas on

individual stocks, and the literature does not really offer

a consensus. Fama and French (1992) estimate individual

stocks’ betas in the same way shown in Eq. (2) , regressing

monthly return on the current and recent lag of the market

return using a five-year rolling window and then summing

the coefficients as in Dimson (1979) . This specification is

frequently used; a recent example is Antiniou et al. (2016) .

Other recent studies estimate betas using shorter windows

and higher-frequency returns. For example, Hong and Sraer

(2016) use a one-year window with daily returns, and they

include five lags of the daily market return, applying the

Dimson summed-coefficients method. This latter estima-
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tion approach is also applied by Cederburg and O’Doherty 

(2016) when forming beta-sorted portfolios, except that, 

following Lewellen and Nagel (2006) , they constrain the 

coefficients on the three least recent lagged market returns 

to be equal. Frazzini and Pedersen (2014) separate correla- 

tion and volatilities when estimating beta. They estimate a 

stock’s correlation with the market ( ρ im 

) using overlapping 

three-day returns over the past five years, whereas they es- 

timate the standard deviations of the stock and the market 

( σ i and σ m 

) using daily returns over the past year. Beta is 

then estimated as ( ̂  σi / ̂  σm 

) ̂  ρim 

. 

We compare our method for estimating beta to the four 

alternative methods noted above, each of which has been 

used in the recent literature addressing the beta anomaly. 3 

There are many criteria one could use in evaluating beta 

estimates. Because our study ultimately compares high- 

beta stocks to low-beta stocks, we want a beta estimation 

method that reliably identifies which stocks have the high- 

est betas and which have the lowest at a given time. We 

find that our method handles this task best. 

To conduct our comparison, for a given beta-estimation 

method we compute each stock’s out-of-sample “hedging 

error” in each month t , which is the difference between 

the stock’s return and the stock’s estimated beta times the 

market return, with the estimation window for beta ending 

in month t − 1 . We average these hedging errors across all 

stocks in the same beta decile as of the end of month t − 1 . 

We then compute the ratio of the variance across months 

of these averaged (i.e., portfolio-level) hedging errors to 

the variance of the market return. This ratio is computed 

for each beta decile. We form beta deciles five different 

ways, using each of the estimation methods, and then aver- 

age the ratio of hedging-error variance to market variance 

across the five sets of beta deciles, obtaining a single value 

for a given estimation method within a given decile. The 

average of these values for the top and bottom beta deciles 

is lowest for our beta-estimation method. The detailed re- 

sults are provided in the Appendix , where we explain that 

the beta-estimation method with the lowest hedging-error 

variance is the one having the lowest mean squared esti- 

mation error in beta. 

3. Empirical results 

This section presents our main empirical results. To 

avoid specifying restrictive parametric relations, we pri- 

marily examine differences in alphas on portfolios formed 

by sorting on one or more of the measures defined in the 

previous section. In Section 3.1 , we sort on beta, confirm- 

ing the well-known beta anomaly in the entire universe, 

but we sort as well on the mispricing measure, revealing 

the interaction between the beta anomaly and mispricing. 

That interaction is consistent with IVOL’s role in generating 

the beta anomaly, as we discuss in Section 3.2 . We pro- 
3 We also explored another approach, not used by existing studies to 

our knowledge, that applies Vasicek shrinkage as in (3) and (4) to the 

estimates using one-year of daily data. Betas estimated this way perform 

similarly to ours in identifying high- and low-beta stocks, but the alpha 

on the long-short spread created by ranking on such beta estimates is 

insignificant.  
vide direct evidence of IVOL’s role in Section 3.3 , which 

distinguishes between the effects of beta versus IVOL in 

producing alpha. Section 3.4 provides additional evidence 

of IVOL’s role by exploiting variation over time in both in- 

vestor sentiment and the beta-IVOL correlation. 

3.1. Beta and mispricing 

We sort stocks each month by their beta estimates, 

forming deciles. Independently, we sort stocks on the mis- 

pricing measure, forming quintiles. We then form 50 port- 

folios based on the intersection of these two sorts as well 

as ten portfolios based just on the beta sort. All of the 

portfolios are value-weighted. Panel A of Table 1 reports 

the average number of stocks in each of the 50 portfolios 

produced by the two-way sort. Panel B reports the post- 

ranking betas of these portfolios, estimated using a sim- 

ple least-squares regression over the entire sample period. 

Although stocks are distributed reasonably evenly across 

the portfolios, we do see that high-beta stocks (decile 10) 

are more prevalent among the most-overpriced stocks as 

compared to the most-underpriced stocks (56 versus 39). 

Also, in Panel B, we see that the estimated beta for the 

top decile is somewhat higher for the most-overpriced 

stocks than for the most-underpriced (1.67 versus 1.34). 

Overall, though, the two-way independent sort appears to 

do a reasonable job of producing substantial dispersion in 

beta within each mispricing level. For the one-way beta 

sort, the difference in beta estimates between the top and 

bottom deciles is 0.92, and the corresponding differences 

within each of the mispricing quintiles are similar in mag- 

nitude. 

Table 2 reports the portfolios’ alphas computed with 

respect to the three factors of Fama and French (1993) . 

The alphas in the bottom row, labeled “all stocks,” de- 

cline nearly monotonically as beta increases. The differ- 

ence in monthly alphas between the highest and lowest 

beta deciles equals −31 bps, with a t -statistic of −2 . 08 . As

discussed at the outset, this “beta anomaly,” which exists 

within the overall stock universe, is both economically and 

statistically significant, and it has been the subject of much 

research over the years. 

The other five rows of Table 2 reveal that this beta 

anomaly, the alpha difference between the highest and 

lowest beta deciles, exists only within the most-overpriced 

stocks. In that highest quintile of the mispricing measure, 

we see that the beta anomaly is −60 bps per month, 

with a t -statistic of −2 . 82 . In contrast, the beta anomaly

within the other four mispricing quintiles ranges between 

−25 bps and 18 bps, with t -statistics between −1 . 28 

and 0.90. The contrast between the absence of the beta 

anomaly in these other four quintiles and the pronounced 

beta anomaly in the most-overpriced quintile is readily ap- 

parent in Fig. 1 , which plots the alphas reported in Table 2 .

Although we focus on three-factor alphas, consistent 

with the more recent anomaly literature, alphas computed 

with respect to a single market factor behave very simi- 

larly. In the overall universe, for example, the one-factor al- 

pha difference between the highest and lowest beta deciles 

equals −38 bps with a t -statistic of −2.14, very close to the 

three-factor values of −31 bps with a t -statistic of −2 . 08 .
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Table 1 

Portfolios formed by sorting on mispricing score and beta: numbers of stocks and estimated betas. 

The table reports the average number of stocks and the estimated market betas for portfolios formed by sorting indepen- 

dently on mispricing scores and pre-ranking betas. A stock’s mispricing score, following Stambaugh et al. (2015) , is its average 

ranking with respect to 11 prominent return anomalies. A stock’s pre-ranking beta, based on a rolling five-year window, is es- 

timated by regressing the stock’s monthly return on the contemporaneous market return plus lagged monthly return, summing 

the slope coefficients, and then applying shrinkage. Panel A reports the average number of stocks in each portfolio, and Panel 

B reports the portfolio’s beta estimated using monthly returns over the sample period, January 1963 through December 2013. 

Mispricing 

quintile 

Beta decile Highest - 

Lowest 
Lowest 2 3 4 5 6 7 8 9 Highest 

Panel A: Average number of stocks 

Underpriced 43 58 59 57 55 52 50 47 45 39 

2 50 53 53 52 50 50 50 49 48 45 

3 56 49 49 49 49 48 48 48 48 48 

4 53 46 45 44 47 47 47 48 49 52 

Overpriced 39 35 36 39 41 45 47 49 52 56 

Panel B: Estimated beta 

Underpriced 0.62 0.74 0.75 0.93 0.97 1.01 1.04 1.14 1.25 1.34 0.72 

2 0.61 0.76 0.89 0.96 1.03 1.08 1.12 1.15 1.31 1.42 0.81 

3 0.55 0.83 0.90 1.01 1.08 1.16 1.19 1.27 1.33 1.51 0.96 

4 0.58 0.80 0.95 1.03 1.09 1.16 1.23 1.30 1.43 1.54 0.96 

Overpriced 0.61 0.83 0.92 1.05 1.19 1.32 1.34 1.38 1.48 1.67 1.06 

All stocks 0.59 0.76 0.84 0.97 1.05 1.09 1.16 1.24 1.35 1.51 0.92 

Table 2 

Alphas on portfolios formed by sorting on mispricing score and beta. 

The table reports alphas for portfolios formed by sorting independently on mispricing scores and pre-ranking betas. Alphas are computed with 

respect to the three factors of Fama and French (1993) . A stock’s mispricing score, following Stambaugh et al. (2015) , is its average ranking with 

respect to 11 prominent return anomalies. A stock’s pre-ranking beta, based on a rolling five-year window, is estimated by regressing the stock’s 

monthly return on the contemporaneous market return plus one lagged monthly return, summing the slope coefficients, and then applying 

shrinkage. The sample period is from January 1963 through December 2013. All t -statistics (in parentheses) are based on the heteroskedasticity- 

consistent standard errors of White (1980) . 

Mispricing 

quintile 

Beta decile Highest - 

Lowest 
Lowest 2 3 4 5 6 7 8 9 Highest 

Underpriced 0.22 0.33 0.36 0.37 0.25 0.26 0.30 0.33 0.19 0.41 0.18 

(2.18) (3.13) (3.50) (3.38) (2.24) (2.44) (2.62) (2.64) (1.32) (2.61) (0.90) 

2 0.29 0.19 0.08 0.13 −0.05 0.21 0.06 -0.04 0.01 0.03 −0.25 

(2.66) (1.73) (0.71) (1.16) (-0.50) (1.77) (0.46) ( −0.30) (0.08) (0.23) ( −1.28) 

3 0.07 −0.11 0.00 −0.02 −0.23 0.07 −0.12 −0.20 0.15 0.01 −0.05 

(0.61) ( −0.79) ( −0.01) ( −0.18) (-1.92) (0.45) ( −0.97) ( −1.58) (1.09) (0.11) ( −0.28) 

4 −0.14 −0.14 −0.32 −0.29 −0.38 −0.29 −0.18 −0.40 −0.40 −0.15 −0.01 

( −1.03) ( −1.11) ( −2.80) ( −2.22) ( −2.93) ( −2.17) ( −1.31) ( −2.79) ( −2.94) ( −0.97) ( −0.05) 

Overpriced −0.35 −0.37 −0.21 −0.66 −0.49 −0.70 −1.00 −0.74 −1.08 −0.96 −0.60 

( −2.56) ( −2.54) ( −1.52) ( −4.34) ( −3.07) ( −4.75) ( −5.89) ( −4.64) ( −6.67) ( −6.11) ( −2.82) 

All stocks 0.11 0.13 0.13 0.03 −0.13 −0.01 −0.10 −0.10 −0.14 −0.20 −0.31 

(1.49) (1.63) (1.85) (0.47) ( −1.91) ( −0.09) ( −1.46) ( −1.31) ( −1.61) ( −1.94) ( −2.08) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The one-factor alpha for the beta spread is −81 bps ( t -

statistic: −3 . 50 ) for the overpriced stocks but is between

just −30 and 18 bps ( t -statistics between −1 . 38 and 0.78)

for the other mispricing quintiles, again behaving very sim-

ilarly to the three-factor alphas. 

Some explanations of the beta anomaly identify beta as

the relevant stock characteristic driving the anomaly. For

example, one explanation invokes the fact that high-beta

stocks offer leverage-constrained investors increased expo-

sure to the stock market that unconstrained investors can

achieve simply through leverage (e.g., Frazzini and Ped-

ersen, 2014 ). A beta anomaly then arises if constrained

investors wanting increased market exposure bid up the

prices of high-beta stocks relative to low-beta stocks. The

results in Table 2 seem to challenge such explanations. If

beta drives the beta anomaly, then why would it do so only
among the most-overpriced stocks? For example, if some

leverage-constrained investors prefer high-beta stocks and

bid up their prices, why do they prefer to do so only for

stocks that a wide range of other anomalies identify as

being currently overpriced? If anything, one would think

such investors would prefer to increase their stock-market

exposure using high-beta positions in stocks that are oth-

erwise underpriced, as opposed to overpriced. 

Another explanation of the beta anomaly is that it dis-

appears if one measures beta in a manner that captures

beta’s variation over time. For example, Cederburg and

O’Doherty (2016) report that when alpha is estimated as

the intercept in a regression that allows beta to depend

on a number of conditioning variables, the resulting al-

phas on beta-sorted portfolios no longer exhibit the usual

negative relation to beta. In forming beta-sorted portfo-
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Fig. 1. Alphas for beta deciles within each mispricing quintile. The plot 

displays monthly alphas on value-weighted portfolios formed by the in- 

tersection of independent sorts on beta (allocated to deciles) and the mis- 

pricing measure (allocated to quintiles). Alphas are computed with re- 

spect to the three-factor model of Fama and French (1993) . The sample 

period is from January 1963 through December 2013 (612 months). 

 

 

lios, those authors estimate betas using daily returns over 

a one-year estimation window. As noted earlier, that beta- 

estimation method does not identify high- and low-beta 

stocks as well as the estimation method we use in forming 

portfolios. When we estimate alphas on our beta-sorted 

portfolios following the same procedure used by Cederburg 

and O’Doherty (2016) , the results are very similar to what 

we report in Table 2 : A significant beta anomaly exists 

in the overall sample as well as in the quintile of the 

most-overpriced stocks, but there is not a significant beta 

anomaly in the other mispricing quintiles. Details are pro- 

vided in the Appendix . 

3.2. The role of IVOL 

Why is the beta anomaly confined largely to overpriced 

stocks? Our explanation combines two key properties of 

IVOL: First, beta is positively correlated with IVOL; the av- 

erage cross-sectional correlation between our estimates of 

beta and IVOL is 0.33. Second, as shown by Stambaugh 

et al. (2015) , IVOL has a negative relation to alpha only 

among overpriced stocks. 

A positive correlation between beta and IVOL can ex- 

ist for a number of reasons. One channel is leverage, both 

financial and nonfinancial. Equity returns made riskier by 

leverage are likely to be more sensitive to news, whether 

market-wide or firm-specific. For example, in the basic 

Black-Scholes-Merton setting analyzed by Galai and Ma- 

sulis (1976) , levered equity’s total volatility, which includes 

IVOL, is proportional to the equity’s beta, which increases 

with leverage. Another potential reason for a positive IVOL- 

beta correlation is behavioral. If high-IVOL stocks are more 

susceptible to mispricing driven by market-wide sentiment 

(e.g., Baker and Wurgler, 2006 ), and if market-wide senti- 

ment is correlated with the market return, then returns on 
high-IVOL stocks have a larger market-sensitive mispricing 

component, increasing these stocks’ betas. 

The fact that IVOL has a negative relation to alpha only 

among overpriced stocks is consistent with IVOL reflecting 

risk that deters arbitrage-driven correction of mispricing. If 

IVOL reflects such arbitrage risk, then among underpriced 

stocks the alpha-IVOL relation should instead be positive, 

consistent with what Stambaugh et al. (2015) find. As that 

study explains, though, the latter positive relation is sub- 

stantially weaker than the negative relation among over- 

priced stocks, consistent with arbitrage asymmetry. That is, 

many investors who would buy a stock they see as under- 

priced are reluctant or unable to short a stock they see as 

overpriced. With less arbitrage capital available to bear the 

risk of shorting overpriced stocks, more of the overpricing 

remains in equilibrium. The negative alpha-IVOL relation 

among overpriced stocks is thus stronger than the positive 

relation among underpriced stocks. 

The negative alpha-IVOL relation among overpriced 

stocks, combined with the positive correlation between 

IVOL and beta, produces a negative alpha-beta relation 

among overpriced stocks. That relation is strong enough 

to produce a significant beta anomaly in the overall uni- 

verse, but it is not as strong as the corresponding alpha- 

IVOL relation. Among the most-overpriced 20% of stocks, 

Stambaugh et al. (2015) report a monthly alpha difference 

between the highest and lowest IVOL quintiles equal to 

−150 bps with a t -statistic of −7 . 36 , as compared to the

difference in Table 2 between the highest and lowest beta 

deciles equal to −60 bps with a t -statistic of −2 . 82 . Finding

the alpha-beta relation to be weaker than the alpha-IVOL 

relation is as expected, given that the correlation between 

beta and IVOL is positive but well below one. As for the 

underpriced stocks, the imperfect beta-IVOL correlation is 

not strong enough to deliver a significant positive alpha- 

beta effect when combined with the relatively weaker pos- 

itive alpha-IVOL relation among underpriced stocks. 

Our explanation of the beta anomaly is that beta is cor- 

related with the underlying quantity really at work: IVOL, 

a measure of arbitrage risk. Some studies instead argue 

that skewness is the underlying quantity generating both 

beta and IVOL anomalies. The basic explanation is that in- 

vestors accept lower expected return in exchange for pos- 

itive skewness while requiring higher expected return to 

bear negative skewness (e.g., Kraus and Litzenberger, 1976; 

Goulding, 2015 ). If the relevant measure of skewness (or 

co-skewness) is omitted when computing alpha but is pos- 

itively correlated with beta and/or IVOL, then the latter 

quantities can exhibit a negative relation with alpha. Stud- 

ies that empirically explore skewness as a source of the 

beta and/or IVOL anomalies include Boyer et al. (2010) , Bali 

et al. (2016) , and Schneider et al. (2016) . Stambaugh et al. 

(2015) observe that high-IVOL stocks indeed tend to have 

substantially higher positive skewness compared to low- 

IVOL stocks but that this difference is very similar among 

both underpriced and overpriced stocks. In contrast, the 

alpha-IVOL relation is positive among underpriced stocks 

but negative among overpriced stocks. A similar challenge 

would seem to arise for skewness-based explanations of 

the beta anomaly. It is not clear why such explanations 

would apply only within overpriced stocks. 
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Table 3 

Alphas on portfolios formed by sorting on mispricing score and beta; deleting overpriced high-IVOL stocks. 

The table reports alphas for portfolios formed by sorting independently on mispricing scores and pre-ranking betas after deleting about 7% 

of the stock universe: stocks in both the top mispricing quintile (i.e., most overpriced) and the top quartile of IVOL. Alphas are computed with 

respect to the three factors of Fama and French (1993) . A stock’s mispricing score, following Stambaugh et al. (2015) , is its average ranking with 

respect to 11 prominent return anomalies. A stock’s pre-ranking beta, based on a rolling five-year window, is estimated by regressing the stock’s 

monthly return on the contemporaneous market return plus lagged monthly return, summing the slope coefficients, and then applying shrinkage. 

The sample period is from January 1963 through December 2013. All t -statistics (in parentheses) are based on the heteroskedasticity-consistent 

standard errors of White (1980) . 

Mispricing 

quintile 

Beta decile Highest - 

Lowest 
Lowest 2 3 4 5 6 7 8 9 Highest 

Underpriced 0.24 0.36 0.36 0.40 0.32 0.31 0.31 0.37 0.29 0.46 0.22 

(2.22) (3.36) (3.38) (3.55) (2.70) (2.75) (2.61) (2.75) (1.92) (2.86) (1.07) 

2 0.30 0.24 −0.01 0.20 0.03 0.16 0.20 −0.07 −0.04 0.04 −0.26 

(2.64) (2.23) ( −0.04) (1.68) (0.28) (1.27) (1.55) ( −0.55) ( −0.26) (0.24) ( −1.24) 

3 0.12 0.03 0.06 0.04 −0.18 0.17 −0.09 −0.19 0.01 0.08 −0.04 

(1.09) (0.25) (0.49) (0.32) ( −1.45) (1.17) ( −0.80) ( −1.41) (0.04) (0.52) ( −0.18) 

4 −0.17 −0.26 −0.13 −0.22 −0.27 −0.22 −0.12 −0.48 −0.22 −0.14 0.03 

( −1.31) ( −2.04) ( −1.13) ( −1.76) ( −2.07) ( −1.59) ( −0.86) ( −3.42) ( −1.48) ( −0.96) (0.12) 

Overpriced −0.20 −0.23 −0.19 −0.51 −0.39 −0.45 −0.74 −0.35 −0.62 −0.56 −0.36 

( −1.54) ( −1.74) ( −1.50) ( −3.84) ( −2.72) ( −3.54) ( −4.64) ( −2.42) ( −4.15) ( −3.58) ( −1.78) 

All stocks 0.11 0.13 0.13 0.05 −0.11 0.02 −0.07 −0.06 −0.07 −0.11 −0.23 

(1.55) (1.70) (1.94) (0.71) ( −1.65) (0.22) ( −1.05) ( −0.72) ( −0.75) ( −1.08) ( −1.52) 

Table 4 

Alphas on portfolios formed by sorting on mispricing score and beta; deleting high −beta stocks. 

The table reports alphas for portfolios formed by sorting independently on mispricing scores and pre-ranking betas after deleting stocks with 

pre-ranking betas in the top 7%. Alphas are computed with respect to the three factors of Fama and French (1993) . A stock’s mispricing score, 

following Stambaugh et al. (2015) , is its average ranking with respect to 11 prominent return anomalies. A stock’s pre-ranking beta, based on 

a rolling five-year window, is estimated by regressing the stock’s monthly return on the contemporaneous market return plus lagged monthly 

return, summing the slope coefficients, and then applying shrinkage. The sample period is from January 1963 through December 2013. All t - 

statistics (in parentheses) are based on the heteroskedasticity-consistent standard errors of White (1980) . 

Mispricing 

quintile 

Beta decile Highest - 

Lowest 
Lowest 2 3 4 5 6 7 8 9 Highest 

Underpriced 0.28 0.36 0.36 0.37 0.42 0.20 0.24 0.54 0.36 0.29 0.02 

(2.50) (3.28) (3.42) (3.41) (3.72) (1.69) (1.90) (3.96) (2.43) (1.90) (0.10) 

2 0.30 0.21 0.05 0.07 0.13 0.11 0.03 0.00 −0.12 −0.03 −0.33 

(2.67) (1.83) (0.49) (0.69) (1.13) (0.98) (0.26) (0.03) ( −0.92) ( −0.26) ( −1.79) 

3 0.11 −0.04 −0.02 0.05 −0.13 0.02 0.10 −0.22 0.05 −0.10 −0.21 

(1.03) ( −0.27) ( −0.17) (0.41) ( −1.02) (0.15) (0.75) ( −1.73) (0.33) ( −0.69) ( −1.13) 

4 −0.03 −0.28 −0.05 −0.19 −0.32 −0.48 −0.09 −0.19 −0.35 −0.44 −0.42 

( −0.20) ( −2.27) ( −0.43) ( −1.48) ( −2.74) ( −3.57) ( −0.61) ( −1.24) ( −2.69) ( −3.38) ( −2.12) 

Overpriced −0.28 −0.30 −0.28 −0.41 −0.61 −0.69 −0.70 −0.63 −0.92 −0.93 −0.65 

( −2.12) ( −2.04) ( −2.00) ( −2.78) ( −3.81) ( −4.75) ( −4.16) ( −4.10) ( −6.42) ( −5.78) ( −3.27) 

All stocks 0.12 0.12 0.15 0.04 −0.03 −0.09 −0.08 −0.02 −0.15 −0.23 −0.35 

(1.57) (1.52) (2.20) (0.58) ( −0.43) ( −1.31) ( −0.99) ( −0.29) ( −1.79) ( −2.47) ( −2.52) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Evidence of IVOL’s role 

The importance of IVOL in generating the beta anomaly

can be demonstrated in a number of ways. We first simply

eliminate stocks in the intersection of the highest 20% of

the mispricing measure and the highest 25% of IVOL. On

average, the number of stocks eliminated is 7% of those in

our universe, representing only 1% of total market value.

Table 3 repeats the analysis in Table 2 for the remain-

ing stocks. We see that eliminating just 7% of the stocks

is sufficient to render the beta anomaly insignificant. The

bottom right cell equals −23 bps, one-fourth less than

the corresponding value in Table 2 , and the t -statistic is

only −1 . 52 . The 8 bps difference in the two results has

a t -statistic of 5.75. In other words, the significant beta

anomaly in the overall universe is sensitive to the presence

of overpriced stocks with high IVOL. 
Suppose that beta is the characteristic driving the beta

anomaly. Then eliminating the 7% of stocks having the

highest betas should presumably reduce the significance

of the beta anomaly at least as much as eliminating 7%

by other criteria. Table 4 reports the results of eliminat-

ing these high-beta stocks (representing 5% of our uni-

verse’s market value) and again repeating the analysis in

Table 2 . Unlike the result in Table 3 , the bottom right

cell of Table 4 reveals a beta anomaly of −35 bps with

a t -statistic of −2 . 52 , actually a bit stronger than the

Table 2 result of -31 bps with a t -statistic of −2 . 08 . This

result in Table 4 , when compared to the insignificant beta

anomaly in Table 3 , seems inconsistent with beta driv-

ing the beta anomaly. The beta anomaly remains strong

in Table 4 despite the fact that the range of betas is re-

duced there substantially more than in Table 3 . Eliminat-

ing the high-beta stocks reduces the post-ranking beta
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Table 5 

Alphas on portfolios formed by sorting on beta and IVOL. 

The table reports alphas for portfolios formed by sorting independently on IVOL and pre-ranking betas. Alphas are computed with respect to the three 

factors of Fama and French (1993) . A stock’s mispricing score, following Stambaugh et al. (2015) , is its average ranking with respect to 11 prominent return 

anomalies. A stock’s pre-ranking beta, based on a rolling five-year window, is estimated by regressing the stock’s monthly return on the contemporaneous 

market return plus one lagged monthly return, summing the slope coefficients, and then applying shrinkage. IVOL is computed as the standard deviation 

of the most recent month’s residuals in a regression of each stock’s daily return on daily realizations of the three Fama-French factors. The last column, 

labeled “Average,” reports the average across the ten beta deciles; similarly, the last row of cells reports the average across the five mispricing quintiles. 

The sample period is from January 1963 through December 2013. All t -statistics (in parentheses) are based on the heteroskedasticity-consistent standard 

errors of White (1980) . 

IVOL 

quintile 

Beta decile Highest - 

Lowest 
Lowest 2 3 4 5 6 7 8 9 Highest Average 

Lowest 0.10 0.12 0.16 0.06 −0.19 0.05 −0.08 −0.03 −0.02 0.20 0.10 0.04 

(1.14) (1.33) (1.71) (0.55) ( −1.79) (0.40) ( −0.71) ( −0.23) ( −0.09) (1.21) (0.54) (0.67) 

2 0.15 0.16 0.07 0.04 0.00 −0.19 −0.02 −0.10 −0.10 −0.17 −0.31 −0.02 

(1.36) (1.46) (0.68) (0.38) ( −0.04) ( −1.69) ( −0.13) ( −0.78) ( −0.79) ( −1.20) ( −1.68) ( −0.33) 

3 0.07 0.10 0.04 −0.15 −0.02 0.15 0.03 −0.02 0.05 −0.06 −0.12 0.02 

(0.48) (0.79) (0.34) ( −1.16) ( −0.13) (1.16) (0.23) ( −0.16) (0.33) ( −0.41) ( −0.61) (0.39) 

4 0.09 0.04 0.07 0.17 0.03 0.05 −0.11 −0.07 −0.33 −0.17 −0.28 −0.02 

(0.48) (0.25) (0.46) (1.17) (0.23) (0.35) ( −0.69) ( −0.53) ( −2.44) ( −1.15) ( −1.10) ( −0.35) 

Highest −0.66 −0.24 −0.61 −0.38 −0.35 −0.12 −0.72 −0.99 −0.56 −0.85 −0.22 −0.55 

( −2.40) ( −1.08) ( −2.84) ( −2.11) ( −1.92) ( −0.63) ( −3.75) ( −5.30) ( −3.08) ( −4.80) ( −0.65) ( −6.46) 

Highest − −0.77 −0.35 −0.77 −0.44 −0.16 −0.17 −0.64 −0.96 −0.54 −1.05 −0.27 −0.58 

Lowest ( −2.81) ( −1.50) ( −3.27) ( −2.10) ( −0.78) ( −0.74) ( −2.93) ( −4.16) ( −2.32) ( −4.69) ( −0.74) ( −5.46) 

Average −0.05 0.04 −0.05 −0.05 −0.11 −0.01 −0.18 −0.24 −0.19 −0.21 −0.16 

( −0.49) (0.44) ( −0.71) ( −0.80) ( −1.68) ( −0.17) ( −2.71) ( −3.38) ( −2.18) ( −2.14) ( −1.02) 

 

 

4 We allow a j and b j to differ across mispricing segments, because F - 

tests reject the nulls (with p -values less than 0.001) that these coefficients 

are equal across mispricing segments. 
difference between the highest and lowest beta deciles to 

0.80, versus 0.92 for the total universe. In contrast, that 

difference is reduced less than one-sixth as much, just to 

0.90, by eliminating the overpriced high-IVOL stocks. 

The importance of IVOL to the beta anomaly is also re- 

vealed by a double-sort on IVOL and beta. Each month we 

independently assign stocks to beta deciles and IVOL quin- 

tiles, and then we construct value-weighted portfolios in 

each of the 10 × 5 intersecting cells. Table 5 reports the al- 

pha on each portfolio, the high-low alpha difference for a 

given variable within each level of the other variable, and 

the average of those high-low differences across all lev- 

els of the other variable. Four of the five high-low beta 

spreads are negative, but only one is even marginally sig- 

nificant: the second-lowest IVOL quintile produces an al- 

pha spread of −31 bps with a t -statistic of −1 . 68 . More- 

over, the high-low beta spread averaged across all IVOL 

quintiles is just −16 bps with a t -statistic of −1 . 02 . Overall, 

there is little evidence of a beta anomaly once one controls 

for IVOL. 

In contrast, the overall negative alpha-IVOL relation re- 

mains strong after controlling for beta. The high-low IVOL 

spread produces a negative alpha in all beta deciles, signifi- 

cantly so in seven of the ten. In addition, the IVOL spread’s 

alpha averaged across the beta deciles is −58 bps with a 

t -statistic of −5 . 46 . 

We also take a somewhat more parametric approach to 

control for IVOL in order to re-examine the beta anomaly 

within each mispricing quintile. Each month, we estimate 

the regression, 

z( ̂  βi,t ) = 

5 ∑ 

j=1 

I(M i,t = j)(a j + b j z(IV OL i,t )) + εi,t , (6) 

where z( ̂  βi,t ) and z ( IVOL i, t ) are the cross-sectional z -scores 

corresponding to the beta and IVOL cross-sectional per- 
centiles in month t , and I(M i,t = j) is the indicator func- 

tion that equals one if stock i falls into mispricing quin- 

tile j in month t and zero otherwise. 4 We then define the 

residual-beta z -score as ε i, t . Table 6 repeats the analysis 

reported in Table 2 , except that instead of sorting on beta 

we sort on residual-beta z -score. In other words, we essen- 

tially sort on the component of beta that is unrelated to 

IVOL within each mispricing quintile. Table 6 shows there 

is no significant beta effect after applying this control for 

IVOL. In Table 6 , the largest negative alpha for the high- 

low spread in IVOL-adjusted beta occurs in the quintile of 

most-overpriced stocks, but even there the alpha is just 

−23 bps with a t -statistic of −1 . 11 . In the overall universe,

the alpha for the spread in IVOL-adjusted beta, reported 

in the bottom-right cell of Table 6 , is −16 bps with a t -

statistic of −1 . 09 . 

The results in Tables 3 through 6 provide direct evi- 

dence of IVOL’s key role in the beta anomaly. The anomaly 

does not survive deletion of high-IVOL overpriced stocks, 

nor does it survive controlling for IVOL either by double- 

sorting or regression. Before moving on, however, we look 

for additional evidence of IVOL’s role by exploiting varia- 

tion over time in the beta-IVOL correlation. 

3.4. Time-varying beta-IVOL correlation and sentiment 

Our proposed explanation of the beta anomaly requires 

the presence of overpriced stocks as well as a positive 

correlation between beta and IVOL. Without overpriced 

stocks, IVOL plays no role in deterring the correction of 

overpricing, and thus a negative alpha-IVOL relation does 

not arise. Even when that negative relation arises, it does 
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Table 6 

Alphas on portfolios formed by sorting on mispricing score and IVOL-adjusted beta. 

The table reports alphas for portfolios formed by sorting independently on mispricing scores and the IVOL-orthogonal component of beta. 

Alphas are computed with respect to the three factors of Fama and French (1993) . A stock’s mispricing score, following Stambaugh et al. (2015) , 

is its average ranking with respect to 11 prominent return anomalies. The IVOL-adjusted component of beta for stock i in month t is the residual 

ε i, t in the cross-sectional regression 

z( ̂  βi,t ) = 

5 ∑ 

j=1 

I(M i,t = j)(a j + b j z(IV OL i,t )) + εi,t , 

where z( ̂  βi,t ) and z ( IVOL i, t ) are the z -scores of pre-ranking betas and IVOL in the cross-section in month t , and I(M i,t = j) is the indicator 

function equal to one (zero otherwise) if stock i is in mispricing quintile j in month t . A stock’s pre-ranking beta, based on a rolling five-year 

window, is estimated by regressing the stock’s monthly return on the contemporaneous market return plus lagged monthly return, summing the 

slope coefficients, and then applying shrinkage. IVOL is computed as the standard deviation of the most recent month’s residuals in a regression 

of each stock’s daily return on daily realizations of the three Fama-French factors. The sample period is from January 1963 through December 

2013. All t -statistics (in parentheses) are based on the heteroskedasticity-consistent standard errors of White (1980) . 

Mispricing 

quintile 

Beta decile Highest - 

Lowest 
Lowest 2 3 4 5 6 7 8 9 Highest 

Underpriced 0.22 0.34 0.20 0.34 0.37 0.34 0.29 0.36 0.22 0.31 0.09 

(1.87) (3.19) (1.75) (2.93) (3.09) (3.15) (2.53) (3.13) (1.68) (2.31) (0.49) 

2 0.24 0.15 0.11 0.02 0.39 0.14 −0.10 0.03 −0.12 0.01 −0.23 

(2.13) (1.29) (0.98) (0.17) (3.29) (1.17) ( −0.87) (0.24) ( −1.02) (0.10) ( −1.24) 

3 0.00 −0.08 0.00 −0.03 −0.07 −0.02 −0.05 0.02 0.05 0.04 0.04 

( −0.01) ( −0.65) (0.03) ( −0.27) ( −0.55) ( −0.12) ( −0.36) (0.14) (0.38) (0.32) (0.21) 

4 −0.08 −0.21 −0.28 −0.29 −0.34 −0.22 −0.40 −0.21 −0.29 −0.17 −0.10 

( −0.59) ( −1.74) ( −2.24) ( −2.22) ( −2.59) ( −1.57) ( −2.74) ( −1.51) ( −2.31) ( −1.17) ( −0.46) 

Overpriced −0.51 −0.27 −0.42 −0.82 −0.74 −0.58 −0.67 −0.93 −1.05 −0.74 −0.23 

( −4.08) ( −1.92) ( −2.87) ( −5.52) ( −4.01) ( −3.99) ( −4.20) ( −5.81) ( −6.10) ( −4.44) ( −1.11) 

All stocks 0.07 0.11 0.03 0.04 0.03 0.01 −0.09 −0.03 −0.15 −0.09 −0.16 

(0.85) (1.42) (0.37) (0.52) (0.41) (0.16) ( −1.33) ( −0.42) ( −1.94) ( −0.97) ( −1.09) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Beta-IVOL correlation and investor sentiment. The figure plots the 

monthly time series of the cross-sectional correlation between beta and 

IVOL within the most-overpriced quintile (solid line) and the Baker and 

Wurgler (2006) investor sentiment index (dashed line). The sample pe- 

riod covers January 1965 through January 2011. 

 

 

 

 

 

 

 

 

 

 

 

not produce the beta anomaly without a positive beta-

IVOL correlation, especially within the overpriced stocks.

Put differently, the conditions most conducive to the beta

anomaly are a substantial presence of overpriced stocks

coupled with a high beta-IVOL correlation among those

stocks. 

We pursue this point in conducting a time-series inves-

tigation of IVOL’s role in the beta anomaly. To identify pe-

riods with a substantial presence of overpriced stocks, we

use the monthly index of investor sentiment constructed

by Baker and Wurgler (2006) . When that index is high,

indicating investor optimism, we assume overpricing of

stocks is more likely, and thus the negative alpha-IVOL re-

lation is stronger. Stambaugh et al. (2015) find that the lat-

ter relation is indeed stronger following high sentiment.

We also compute each month the correlation between beta

and IVOL by standardizing our estimates of both quanti-

ties, transforming those standardized estimates into cross-

sectional z-scores, and then computing the correlation be-

tween the two z -scores within the quintile of the most-

overpriced stocks. 

Fig. 2 plots the monthly series of sentiment and the

beta-IVOL correlation. The series exhibit significant varia-

tion but only modest comovement. Sentiment reaches its

highest value in the late 1960s and then falls to its lowest

trough in the 1970s. In contrast, the beta-IVOL correlation

hits a significant trough near zero in the late 1960s and

reaches its highest values in the early and mid-1970s. The

beta-IVOL correlation is again nearly zero in the mid-90s

and late 20 0 0s, both periods in which sentiment is about

average. On the other hand, both series experience relative

peaks in the early 1980s and early 20 0 0s. We next exploit

the fact that there are some periods when both series are

high but other periods when one or both are not. 
We assign the months from 1965 through 2010 to

four regimes: high correlation and high sentiment (HcHs),

low correlation and high sentiment (LcHs), high correla-

tion and low sentiment (HcLs), and low correlation and

low sentiment (LcLs). A given month is classified as high

(low) sentiment if the previous month’s index value is

above (below) the whole-sample median; high- and low-

correlation months are classified in the same manner. The

four regimes reflect the intersection of these two-way

classifications. The number of months in each regime is

fairly similar across regimes, with HcHs and LcLs having
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Table 7 

The beta anomaly in periods of high and low levels of investor sentiment and beta-IVOL 

correlation. 

The table reports alphas on value-weighted portfolios containing stocks in the highest 

and lowest beta deciles. The alphas on the low-beta portfolio, αL , and the high-beta port- 

folio, αH , are computed in each of four regimes. Months are assigned to regimes according 

to whether investor sentiment and the most-overpriced stocks’ beta-IVOL correlation are 

above or below their median values. Alphas are estimated in the regression 

R i,t = 

4 ∑ 

j=1 

α j D j,t + δ1 MKT t + δ2 SMB t + δ3 HML t + εi,t , (18) 

where R i, t is the return on the high-beta decile portfolio, the return on the low-beta decile 

portfolio, or the difference in those returns (high minus low). The regime dummy D j, t 
equals one if month t is in regime j and zero otherwise, αj is the alpha in regime j , and 

MKT t , SMB t , and HML t are the three factors defined by Fama and French (1993) . The sample 

period is from August 1965 through January 2011. All t -statistics (in parentheses) are based 

on the heteroskedasticity-consistent standard errors of White (1980) . The F -statistic tests 

equality across regimes of αH − αL . 

Beta-IVOL Investor Months in 

correlation sentiment αL αH αH − αL regime 

High High 0.48 −0.68 −1.16 112 

(2.27) ( −2.44) ( −2.91) 

Low High −0.01 −0.13 −0.12 160 

( −0.10) ( −0.71) ( −0.43) 

High Low 0.12 −0.23 −0.35 161 

(0.98) ( −1.11) ( −1.23) 

Low Low −0.17 0.33 0.51 113 

( −1.05) (1.32) (1.35) 

F -statistic: 3.73 

( p -value:) (0.01) 

 

somewhat fewer months, 112 and 113, respectively, com- 

pared to 160 and 161 for each of LcHs and HcLs. 5 

Table 7 reports alphas for the high-low beta spreads in 

each of the four regimes. The alphas are estimated as co- 

efficients on regime dummy variables in the regression 

R H,t −R L,t = 

4 ∑ 

j=1 

α j D j,t + δ1 MKT t + δ2 SMB t + δ3 HML t + εi,t , 

(7) 

where R H, t and R L, t are the returns on the high- and low- 

beta decile portfolios in month t, D j, t equals one if month t 

is in regime j and zero otherwise, αj is the alpha in regime 

j , and MKT t , SMB t , and HML t are the three factors defined 

by Fama and French (1993) . 

Only the high-correlation/high-sentiment regime, HcHs, 

exhibits a significant alpha on the high-low beta spread, 

consistent with a high beta-IVOL correlation and a sub- 

stantial presence of overpricing being the conditions most 

conducive to the beta anomaly. In that regime, the monthly 

alpha is −116 bps with a t -statistic of −2 . 91 . The other 

negative alphas occur in the LcHs regime and HcLs regime, 

where the level of one or the other of the two series is 

high, but those alphas are substantially smaller: the largest 

in magnitude is −35 bps with a t -statistic of just −1 . 23 . In 

the regime with both low beta-IVOL correlation and low 

sentiment, the alpha is actually positive and thus opposite 

the beta anomaly, though the value is just 51 bps with a 

t -statistic of 1.35. An F -test of equality of alphas across the 

four regimes produces a p -value of 0.01. Overall, the results 

of this investigation exploiting variation in sentiment and 
5 Observations equal to the median are assigned to the low regime. 

 

 

the beta-IVOL correlation are consistent with our explana- 

tion of IVOL’s role in producing the beta anomaly. 

Antiniou et al. (2016) and Shen et al. (2017) also pro- 

pose sentiment-related explanations in which the beta 

anomaly is stronger when sentiment is high. Their expla- 

nations, different from ours, do not involve IVOL or the 

IVOL-beta correlation. The results in Table 7 are useful in 

judging both studies’ explanations relative to ours. We see 

that high sentiment alone is not sufficient to generate the 

beta anomaly: periods with high sentiment but low beta- 

IVOL correlation exhibit no beta anomaly. 

4. Betting against beta? 

Frazzini and Pedersen (2014) analyze a betting-against- 

beta (BAB) strategy designed to exploit the beta anomaly. 

The BAB strategy goes long a portfolio of low-beta stocks 

and short a portfolio of high-beta stocks, taking a larger 

long position than short position so that the overall strat- 

egy has a zero beta. The strategy is financed with riskless 

borrowing, so 

r BAB 
t+1 = 

1 

βL 
(r L t+1 − r f ) − 1 

βH 
(r H t+1 − r f ) (8) 

is the payoff on this zero-investment strategy having long 

and short positions of sizes 1/ βL and 1/ βH , where βL and 

βH are the betas on the long and short portfolios. Each of 

those portfolios is constructed using individual-stock beta 

rankings to determine weights. Specifically, if r t+1 denotes 

the vector of returns on the n individual stocks in the trad- 

ing universe, then r L 
t+1 

= r ′ 
t+1 

ω L and r H 
t+1 

= r ′ 
t+1 

ω H , where

ω H = k (z − z̄ ) + , ω L = k (z − z̄ ) −, z is an n -vector with i th el-

ement equal to z it = rank (βit ) , β it is the estimated beta for 

stock i , z̄ is the average z , x + and x − denote the positive
it 
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Table 8 

Sources of betting-against-beta profits. 

The table reports the components of the betting-against-beta (BAB) alpha, αBAB , which is de- 

composed as 

αBAB = (αL − αH ) + 

[ (
1 

βL 

− 1 

)
αL + 

(
1 − 1 

βH 

)
αH 

] 
, 

where αL and αH are the alphas of the low- and high-beta portfolios, and 1 
βL 

and 1 
βH 

are average 

reciprocals of the long- and short-leg betas. Alphas are computed with respect to the three-factor 

model of Fama and French (1993) , and t -statistics are reported in parentheses. Results are shown 

within each quintile of the mispricing measure as well as for the total stock universe. The sample 

period is January 1963 through December 2013. 

Mispricing (1 /βL − 1) αL 

quintile αL αH 1/ βL 1/ βH αL − αH +(1 − 1 /βH ) αH αBAB 

Underpriced 0.49 0.52 1.51 0.74 −0.03 0.41 0.38 

(8.62) (8.69) ( −0.37) (5.42) (3.80) 

2 0.31 0.24 1.58 0.72 0.08 0.31 0.39 

(5.00) (3.93) (0.89) (3.65) (3.25) 

3 0.12 0.10 1.64 0.72 0.02 0.25 0.27 

(2.18) (1.61) (0.25) (2.85) (2.31) 

4 −0.11 −0.18 1.61 0.71 0.08 0.10 0.18 

( −1.69) ( −2.54) (0.77) (1.07) (1.43) 

Overpriced −0.47 −0.88 1.47 0.70 0.41 −0.33 0.08 

( −5.89) ( −8.04) (3.41) ( −3.17) (0.67) 

All stocks 0.12 −0.08 1.56 0.71 0.20 0.16 0.36 

(2.49) ( −1.28) (2.40) (1.93) (3.47) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L H  
and negative elements of a vector x , and k is a normalizing

constant such that the elements of both ω H and ω L sum to

one. 

As Frazzini and Pedersen (2014) document, the BAB

strategy produces significant profits across a variety of as-

set markets. We re-examine its performance in the US

stock market along two dimensions. First, in Section 4.1 ,

we look at the extent to which the strategy’s profitability is

attributable to exploiting the beta anomaly versus taking a

levered net-long position in mispriced stocks. Second, mo-

tivated by our IVOL-based explanation of the beta anomaly,

we explore in Section 4.2 whether a betting-against-IVOL

spread subsumes the profitability of the BAB spread. 

4.1. Sources of BAB alpha 

From Eq. (8) , the alpha for the BAB strategy can be de-

composed as 

αBAB = 

1 

βL 
αL − 1 

βH 
t 

αH 

= (αL − αH ) + 

[ (
1 

βL 

− 1 

)
αL + 

(
1 − 1 

βH 

)
αH 

] 
, (9)

where αL and αH are the alphas on the high- and low-

beta portfolios. The first term on the right-hand side of

Eq. (9) , (αL − αH ) , is the alpha on the beta spread. That

is, this component of αBAB reflects the beta anomaly ex-

amined above. The second term, in square brackets, adds

αL and αH , with each multiplied by positive coefficients,

given βL < 1 < βH . This component of αBAB is not directly

related to the beta anomaly, given that both αL and αH re-

ceive positive weights. Essentially, this component simply

reflects the fact that the BAB strategy is overall a levered

net-long position, given the larger size of the long position

versus the short. This second component can nevertheless

be a source of profit. For example, if αL = αH = ᾱ > 0 , so

that both the high- and low-beta portfolios have positive

alpha that is unrelated to beta, then this second compo-

nent of α is the positive quantity (1 /β − 1 /β ) ̄α. 
BAB L H 
We compute the BAB alpha for our total universe as

well as for each of the mispricing quintiles, applying the

decomposition in Eq. (9) in each case. Table 8 reports the

results. The last column contains the BAB strategy’s al-

pha, αBAB , and the preceding columns contain the quan-

tities appearing in the decomposition of αBAB in (9) . In the

total universe, αBAB equals 36 bps per month, with a t -

statistic of 3.47. More than half of that alpha, 20 bps ( t -

statistic: 2.40), is contributed by the first term in (9) that

reflects the beta anomaly. The other component, reflecting

the strategy’s overall levered net-long position, is a non-

trivial 16 bps ( t -statistic: 1.93). In other words, a significant

portion of the profit from a BAB strategy need not stem

from the beta anomaly. 

This point emerges even more sharply from the results

in Table 8 for the separate mispricing quintiles. The three

least overpriced quintiles produce economically and statis-

tically significant BAB profit, with αBAB ranging between 27

and 39 bps per month and t -statistics between 2.31 and

3.80. Strikingly, the most-overpriced quintile, in which the

beta anomaly is far stronger than in the other four, yields

an αBAB of 8 bps with a t -statistic of just 0.67. We see

from Table 8 that the BAB profits in the other four quin-

tiles owe much to the second term in (9) , which accounts

for between 56% and 108% of their αBAB values. For ex-

ample, in the quintile of most-underpriced stocks, where

both αL and αH are (not surprisingly) significantly positive,

that second component of αBAB equals 41 bps, more than

the overall αBAB in the total universe. The contribution of

(αL − αH ) in that quintile is negative 3 bps, reflecting the

absence of a significant beta anomaly among the under-

priced stocks. 

The fact that the BAB strategy produces the smallest al-

pha among the stocks exhibiting by far the strongest

beta anomaly, the most-overpriced stocks, further

underscores the importance of both components in

Eq. (9) . In that quintile we see a strong contribution of

41 bps by (α − α ) , reflecting the beta anomaly, but
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most of that contribution to αBAB is offset by the second 

component, equal to −33 bps, reflecting the negative 

values of both αL and αH associated with overpricing. In 

other words, the BAB strategy’s ability to exploit the beta 

anomaly where it exists most strongly is foiled by the 

strategy’s levered net-long position in overpriced stocks. 

The first component in Eq. (9) is the alpha on what 

might reasonably be termed the “unlevered” BAB strat- 

egy. That strategy, also zero-investment, directly exploits 

the beta anomaly but does not employ leverage in order 

to achieve a zero beta. This unlevered BAB strategy, which 

yields an alpha of 41 bps ( t -statistic: 3.41) in the quin- 

tile of most-overpriced stocks, as reported in Table 8 , de- 

livers an alpha of just 6 bps ( t -statistic: 0.79) in the re- 

maining portion of the stock universe. Here again we see 

that the beta anomaly is much stronger among the over- 

priced stocks. The difference between this result and the 

spreads between the beta-ranked portfolios examined in 

Table 2 is simply that the latter analysis compares value- 

weighted portfolios in the extreme beta deciles, whereas 

here we compare beta-weighted portfolios of stocks in the 

two halves of the beta distribution. 

4.2. BAB versus betting against IVOL 

Frazzini and Pedersen (2014) examine the robustness of 

BAB profits to controlling for IVOL by constructing a BAB 

strategy within each IVOL decile. They find significant BAB 

profits within each decile. Given our previous discussion, 

however, significant BAB profits need not reflect a beta 

anomaly. For example, with a relation between alpha and 

IVOL, the alphas on both the high- and low-beta portfolios 

in a given IVOL decile can equal the same positive value if 

there is no beta anomaly within that decile. In that case 

the first term in Eq. (9) equals zero, but the second term 

nevertheless delivers a positive BAB profit. In other words, 

even if BAB profits are robust to controlling for IVOL, the 

beta anomaly need not be. 

In addition to the approaches we take in Section 3 to 

control for IVOL when assessing the beta anomaly, here we 

explore yet another. We ask whether the unlevered BAB 

strategy discussed above produces an alpha with respect 

to a set of factors that include unlevered “betting-against- 

IVOL” (BAI) strategies constructed analogously to the un- 

levered BAB strategy. Recall that the direction of the rela- 

tion between alpha and IVOL depends on the direction of 

mispricing. We therefore first construct two BAI strategies, 

one within the quintile of the most-underpriced stocks 

and the other within the most-overpriced quintile. For 

each strategy, we follow the same procedure detailed after 

Eq. (8) for the BAB strategy, with just two departures. First, 

z it = rank (σit ) , where σ it is the estimated IVOL for stock i , 

and, second, z̄ is the average z it within the given mispricing 

quintile. For the overpriced stocks, the long and short legs 

of the unlevered BAI strategy are otherwise identified and 

weighted identically as in the unlevered BAB strategy, con- 

sistent with the negative alpha-IVOL relation among over- 

priced stocks. For the underpriced stocks, the roles of long 

and short are reversed, given the positive alpha-IVOL rela- 

tion within that segment. 
The unlevered BAI strategy for the overpriced stocks 

has an alpha of 105.1 bps ( t -statistic: 9.78), and the strat- 

egy’s alpha for underpriced stocks is 22.90 bps ( t -statistic: 

2.72). These results echo those of Stambaugh et al. (2015) , 

who find a significantly positive alpha-IVOL relation among 

underpriced stocks but an even stronger negative rela- 

tion among overpriced stocks. As before, alphas are com- 

puted with respect to the three factors of Fama and French 

(1993) . A simple average of the return spreads on the over- 

priced and underpriced BAI strategies yields an alpha of 

64 bps ( t -statistic: 11.22). It also happens that the simple 

market beta of this combination BAI strategy is nearly zero 

( −0 . 05 ). 

Recall from the last row of Table 8 that the unlev- 

ered BAB strategy in the total universe has a monthly al- 

pha of 20 bps ( t -statistic: 2.40) with respect to the three 

Fama-French factors. If those factors are augmented by 

an additional factor, the average of the underpriced and 

overpriced BAI series, the BAB alpha becomes −8 bps 

( t -statistic: −0.73). That is, the beta anomaly, when ex- 

ploited by the unlevered BAB strategy, does not survive 

this control for IVOL. In contrast, the averaged BAI strat- 

egy, which is essentially zero-beta, produces a monthly al- 

pha of 60 bps ( t -statistic: 10.77) with respect to the three 

Fama–French factors plus the BAB series. 

5. Conclusions 

We provide an explanation for the beta anomaly, which 

is negative (positive) alpha on stocks with high (low) beta. 

The anomaly arises from beta’s positive cross-sectional cor- 

relation with IVOL. As shown by Stambaugh et al. (2015) , 

the relation between alpha and IVOL is positive among un- 

derpriced stocks but negative and stronger among over- 

priced stocks, where mispricing is gauged by a multi- 

anomaly measure. This mispricing-dependent direction of 

the alpha-IVOL relation is consistent with IVOL reflect- 

ing risk that deters arbitrage-driven price correction. The 

stronger negative relation among overpriced stocks is con- 

sistent with a lower amount of capital being able or willing 

to bear the risks of shorting overpriced stocks as compared 

to the amount of capital available for buying underpriced 

stocks. The asymmetry produces a negative alpha-IVOL re- 

lation in the total stock universe. This negative alpha-IVOL 

relation combines with the positive beta-IVOL correlation 

to produce a significantly negative alpha-beta relation, the 

beta anomaly. 

Consistent with this explanation, a significant beta 

anomaly appears only among overpriced stocks. Also con- 

sistent with our explanation, the beta anomaly does not 

survive various controls for IVOL, and excluding just 7% of 

the stock universe, overpriced stocks with high IVOL, ren- 

ders the beta anomaly insignificant. 

Our explanation of the beta anomaly requires a sub- 

stantial presence of overpriced stocks coupled with a pos- 

itive beta-IVOL correlation. We should therefore expect 

the strongest beta anomaly in periods when overpricing 

is especially likely and the beta-IVOL correlation among 

the most-overpriced stocks is especially high. The data 

support this prediction when we use high levels of investor 

sentiment to proxy for periods when overpricing is most 
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likely. We find a significant beta anomaly in periods when

investor sentiment and the beta-IVOL correlation are both

above their median values but not when either or both

quantities are below their medians. 

The Frazzini and Pedersen (2014) betting-against-beta

(BAB) strategy, which is levered to achieve a zero beta, has

one source of profit that exploits the beta anomaly, but it

has an additional source of potential profit reflecting its

levered net-long position in stocks that may have positive

alphas for reasons unrelated to the beta anomaly. An un-

levered version of the BAB strategy that reflects a direct

play on the beta anomaly does not produce a significant

alpha with respect to factors that include analogously con-
Table A.1 

Comparing beta-estimation methods. 

The table compares our beta-estimation method, which uses five years 

Vasicek (1973) shrinkage (“monthly 5-year shrunk”), to four other estima

returns with a five-lag Dimson correction (“daily 1-year”), the former with 

(“daily 1-year constrained”), five years of monthly returns with a one-lag 

and Pedersen (2014) that separately estimates correlations and volatilities (

pute each stock’s out-of-sample “hedging error” in each month t , the diff

times the market return, with the estimation window for beta ending in 

average of these hedging errors across all stocks in the same beta decile

variance of this portfolio-level hedging error to the variance of the marke

deciles five different ways, using each of the estimation methods, giving 5

each portfolio is constructed using our beta-estimation method. Each row 

in forming the decile portfolios. The last column gives the average value 

contains the average of the five values displayed in the five rows above. Th

Estimation method for B

forming deciles Lowest(L) 2 3 4 5

Panel A: Monthly 5-year shrunk 

Monthly 5-year shrunk 0.260 0.181 0.141 0.147 0.11

Daily 1-year 0.331 0.236 0.187 0.165 0.13

Daily 1-year constrained 0.356 0.241 0.193 0.173 0.13

Monthly 5-year 0.277 0.187 0.150 0.140 0.12

Frazzini-Pedersen 0.418 0.260 0.206 0.188 0.16

Average 0.328 0.221 0.175 0.162 0.13

Panel B: Daily 1-year 

Monthly 5-year shrunk 0.224 0.159 0.129 0.135 0.12

Daily 1-year 0.526 0.258 0.188 0.156 0.12

Daily 1-year constrained 0.502 0.271 0.198 0.153 0.11

Monthly 5-year 0.238 0.168 0.135 0.129 0.12

Frazzini-Pedersen 0.407 0.238 0.176 0.163 0.14

Average 0.379 0.219 0.165 0.147 0.12

Panel C: Daily 1-year constrained 

Monthly 5-year shrunk 0.222 0.158 0.129 0.135 0.12

Daily 1-year 0.460 0.241 0.178 0.150 0.12

Daily 1-year Constrained 0.519 0.277 0.201 0.152 0.11

Monthly 5-year 0.237 0.165 0.137 0.129 0.12

Frazzini-Pedersen 0.413 0.240 0.177 0.163 0.14

Average 0.370 0.216 0.164 0.146 0.12

P anel D: Monthly 5-Year 

Monthly 5-year shrunk 0.315 0.197 0.142 0.154 0.11

Daily 1-year 0.322 0.229 0.181 0.163 0.14

Daily 1-year constrained 0.345 0.233 0.187 0.167 0.13

Monthly 5-year 0.387 0.217 0.151 0.144 0.12

Frazzini-Pedersen 0.402 0.251 0.191 0.182 0.16

Average 0.354 0.225 0.170 0.162 0.13

Panel E: Frazzini-Pedersen 

Monthly 5-year shrunk 0.291 0.211 0.164 0.152 0.12

Daily 1-year 0.368 0.274 0.206 0.176 0.14

Daily 1-year constrained 0.387 0.273 0.215 0.186 0.14

Monthly 5-year 0.294 0.221 0.183 0.147 0.12

Frazzini-Pedersen 0.424 0.268 0.219 0.190 0.17

Average 0.353 0.249 0.197 0.170 0.14
structed betting-against-IVOL (BAI) return. In contrast, the

BAI strategy produces a large alpha with respect to factors

that include the BAB return. 

Appendix 

A.1. Comparing beta-estimation methods 

For each beta-sorted portfolio i in month t , define the

out-of-sample “hedging error” as 

h i,t = R i,t − ˆ βi,t R m,t , (A.1)
of monthly returns with a one-lag Dimson (1979) correction and 

tion methods from the beta-anomaly literature: one year of daily 

the three least recent lags constrained to have the same coefficient 

Dimson correction (“monthly 5-year”), and the method of Frazzini 

“Frazzini-Pedersen”). For a given beta-estimation method we com- 

erence between the stock’s return and the stock’s estimated beta 

month t − 1 . We compute the value-weighted (i.e., portfolio-level) 

 as of the end of month t − 1 . The table reports the ratio of the 

t return (averaged over rolling five-year windows). We form beta 

0 portfolios in total. For example, in Panel A, the hedged return of 

of the panel indicates which beta-estimation is used to sort stocks 

of decile 1 and decile 10. The last row in each panel (“Average”) 

e sample period is from 1963/1 to 2013/12. 

eta decile Avg of 

 6 7 8 9 Highest (H) H & L 

6 0.126 0.142 0.184 0.242 0.403 0.332 

8 0.134 0.153 0.191 0.366 0.910 0.620 

4 0.146 0.150 0.200 0.302 0.896 0.626 

2 0.119 0.143 0.214 0.359 0.815 0.546 

5 0.159 0.164 0.187 0.251 0.608 0.513 

5 0.137 0.150 0.195 0.304 0.726 0.527 

2 0.125 0.142 0.179 0.230 0.373 0.299 

3 0.132 0.151 0.204 0.380 1.029 0.778 

6 0.131 0.149 0.212 0.314 0.898 0.700 

3 0.113 0.136 0.207 0.354 0.779 0.509 

9 0.133 0.135 0.173 0.242 0.559 0.483 

7 0.127 0.142 0.195 0.304 0.728 0.554 

2 0.124 0.141 0.180 0.229 0.369 0.296 

1 0.130 0.149 0.194 0.363 0.938 0.699 

5 0.131 0.148 0.211 0.313 0.893 0.706 

2 0.112 0.136 0.205 0.350 0.766 0.502 

9 0.134 0.136 0.172 0.241 0.555 0.484 

6 0.126 0.142 0.192 0.299 0.704 0.537 

8 0.135 0.175 0.255 0.389 0.810 0.562 

1 0.137 0.159 0.184 0.354 0.823 0.572 

4 0.147 0.152 0.200 0.298 0.772 0.559 

7 0.139 0.186 0.315 0.611 1.689 1.038 

2 0.161 0.168 0.182 0.249 0.573 0.487 

6 0.144 0.168 0.227 0.380 0.933 0.644 

2 0.133 0.148 0.199 0.256 0.427 0.359 

8 0.144 0.159 0.203 0.360 0.877 0.623 

3 0.153 0.158 0.218 0.307 0.838 0.613 

7 0.123 0.154 0.231 0.379 0.868 0.581 

4 0.166 0.178 0.198 0.252 0.579 0.502 

3 0.144 0.159 0.210 0.311 0.718 0.535 
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Table A.2 

Cederburg-O’Doherty estimates of alphas on portfolios formed by sorting on mispricing score and beta. 

The table reports alphas for portfolios formed by sorting independently on mispricing scores and pre-ranking betas. Alphas are computed with 

respect to the three factors of Fama and French (1993) following the procedure of Cederburg and O’Doherty (2016) , which allows betas on factors 

to depend on various instruments. Alpha is estimated as the intercept in the regression, 

ret i,t = αi,t + (γm,i, 0 + γm,i, 1 Z 
m 
i,t−1 ) MKT t + (γs,i, 0 + γs,i, 1 Z 

s 
i,t−1 ) SMB t + (γh,i, 0 + γh,i, 1 Z 

h 
i,t−1 ) HML t + εi,t , 

where ret i, t is the quarterly return of portfolio i in quarter t , and MKT t , SMB t , and HML t are quarterly returns that compound the Fama-French 

monthly factors. The instruments in Z m 
i,t−1 

include the dividend yield, default premium, and short-term (past 3-month) and long-term (past 36- 

month) daily market betas. The instruments in Z s 
i,t−1 

are the same except that the daily market betas are replaced by daily SMB betas; similarly, 

in Z h 
i,t−1 

, daily HML betas are included instead. The sample period is from January 1963 through December 2013. All t -statistics (in parentheses) 

are based on the heteroskedasticity-consistent standard errors of White (1980) . 

Mispricing 

quintile 

Beta decile Highest - 

Lowest 
Lowest 2 3 4 5 6 7 8 9 Highest 

Underpriced 0.59 0.67 1.18 1.42 0.68 1.27 0.38 1.05 0.15 0.43 −0.16 

(1.69) (2.33) (3.58) (4.37) (1.81) (3.84) (0.90) (2.19) (0.43) (0.96) ( −0.25) 

2 0.75 0.12 0.43 0.45 0.14 0.01 0.28 −0.3 0.29 0.54 −0.21 

(2.66) (0.39) (1.08) (1.31) (0.43) (0.03) (0.83) ( −0.84) (0.71) (1.36) ( −0.40) 

3 0.23 −0.32 −0.37 −0.81 −0.47 0.36 −0.01 −0.65 0.27 −0.31 −0.54 

(0.69) ( −1.14) ( −1.12) ( −2.16) ( −1.21) (0.87) ( −0.03) ( −1.53) (0.59) ( −0.67) ( −0.90) 

4 −0.19 −0.74 −0.45 −0.65 −0.03 −0.55 −1.24 −1.04 −1.16 −1.21 −1.01 

( −0.43) ( −2.01) ( −1.39) ( −1.72) ( −0.07) ( −1.26) ( −2.93) ( −2.43) ( −2.60) ( −2.68) ( −1.43) 

Overpriced −0.93 −0.77 −1.40 −1.61 −1.50 −1.82 −2.16 −2.07 −1.89 −2.41 −1.49 

( −1.92) ( −2.01) ( −2.61) ( −3.29) ( −3.49) ( −3.31) ( −4.89) ( −4.30) ( −3.51) ( −4.79) ( −2.04) 

All stocks 0.34 −0.01 0.24 0.18 −0.23 0.10 −0.43 −0.19 −0.39 −0.65 −0.99 

(1.59) ( −0.04) (1.23) (0.83) ( −1.12) (0.50) ( −2.24) ( −0.73) ( −1.48) ( −2.09) ( −2.36) 

C

V

V

6 The variances in the numerator and denominator can change over 

time, so we estimate those variances using rolling five-year windows 

and compute the average ratio over our sample period. We value-weight 

the hedging errors within a decile because our investigation of the beta 

anomaly examines alphas on value-weighted portfolios. Even though a 

given error in estimating beta makes a small stock just as likely as a large 

stock to be put in the wrong beta-sorted portfolio, the small stock gets 

less weight in our alpha calculations, so the stocks for which accurate 

beta estimation is more important are those receiving more weight when 

computing alphas on the beta-sorted portfolios. 
where R i, t and R m, t are the returns on the asset and the 

market, and 

ˆ βi,t is the beta estimate (computed using data 

prior to period t ). Assume the asset’s return is generated 

as 

R i,t = a i + βi,t R m,t + εi,t , (A.2) 

where E { εi,t | R m,t } = 0 . Define the estimation error in 

ˆ βi,t 

as 

δit = βi,t − ˆ βi,t , (A.3) 

and also assume that neither the covariance of R m, t with 

ε i, t nor the means and variances of R m, t and ε i, t depend 

on δit : 

ov { R m,t , εi,t | δit } = Cov { R m,t , εi,t } = 0 

E { R m,t | δit } = E { R m,t } 
E { εi,t | δit } = E { εi,t } = 0 

V ar{ R m,t | δit } = V ar{ R m,t } 
V ar{ εi,t | δit } = V ar{ εi,t } . (A.4) 

Given the above assumptions, the variance of h i, t condi- 

tional on δit is 

 ar{ h i,t | δit } = δ2 
it V ar{ R m,t } + V ar{ εi,t } , (A.5) 

and, using variance decomposition, 

 ar{ h i,t } = E { V ar{ h i,t | δit }} + V ar{ E { h i,t | δit }} 
= E { δ2 

it } [ V ar{ R m,t } + (E { R m,t } ) 2 ] + V ar{ εi,t } 
− (E { δit } ) 2 (E { R m,t } ) 2 . (A.6) 

Dividing both sides of (A.6) by Var { R m, t } gives 

V ar{ h i,t } 
V ar{ R m,t } = E { δ2 

it } [1 + g t ] + 

V ar{ εi,t } 
V ar{ R m,t } − (E { δit } ) 2 g t 

≈ E { δ2 
it } + 

V ar{ εi,t } 
V ar{ R m,t } , (A.7) 
where 

g t = 

(E { R m,t } ) 2 
V ar{ R m,t } , (A.8) 

and the approximation in (A.7) invokes the fact that g t is 

small with monthly returns. For example, if the monthly 

market return has mean 0.10/12 and variance 0.20 2 /12, 

then g t = 0 . 02 . 

For any given asset, the second term on the RHS of 

Eq. (A.7) is equal across different beta-estimation meth- 

ods because ε it , which is the unobserved true disturbance 

term in (A.2) , does not involve beta estimation. There- 

fore, ranking by the mean squared estimation error in 

beta, E { δ2 
it 
} , is equivalent to ranking by the variance ratio, 

Var{ h i,t } 
Var{ R m,t } . Table A.1 reports this ratio, computed over our 

1963–2013 sample period, for five sets of value-weighted 

beta-ranked portfolios, one set for each of the five beta- 

estimation methods. 6 We construct a set of portfolios for 

each method because the second RHS term in (A.7) does 

differ across assets (because ε it does). Rather than exam- 

ine hedging errors on portfolios formed by sorting on be- 

tas estimated using just one method, we use all five meth- 

ods and compute 
Var{ h i,t } 

Var{ R m,t } for each of the five sets of beta- 

sorted decile portfolios. All of these values are reported in 

Table A.1 , and the last row in each panel reports the av- 
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erages of 
Var{ h i,t } 

Var{ R m,t } across the five sets of decile portfolios.

As noted earlier, our method achieves the lowest average

of these values for the highest and lowest beta deciles (the

bottom right-hand value in each panel of Table A.1 ). 

A.2. Estimating alpha in a conditional-beta setting 

Table A.2 repeats the analysis in Table 2 , for the same

portfolios analyzed there, except that the alphas are es-

timated using the procedure in Cederburg and O’Doherty

(2016) . 
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